
1 / 58

 Source: UIC

 Date: 12/02/2023

 Reference: FRMCS FFFIS-7950

 Version: 1.0.0

 No of pages: 58

Future Railway Mobile
Communication System

Form Fit Functional Interface
Specification

2 / 58

ISBN 978-2-7461-2896-5

Warning

No part of this publication may be copied, reproduced or distributed by any means whatsoever, including electronic,

except for private and individual use, without the express permission of the International Union of Railways (UIC).

The same applies for translation, adaptation or transformation, arrangement or reproduction by any method or

procedure whatsoever. The sole exceptions – noting the author’s name and the source –are “analyses and brief

quotations justified by the critical, argumentative, educational, scientific or informative nature of the publication into

which they are incorporated” (Articles L 122-4 and L122-5 of the French Intellectual Property Code).

© International Union of Railways (UIC) – Paris, 2021

3 / 58

Document history

Version Date Details

0.0.1 24.02.2021 Creation of the document

0.0.2 to 0.0.8 08.07.2021 Interim internal versions

0.0.9 13.07.2021 First version reviewed internally

0.0.10 23.07.2021 Add description of API features

0.0.11 28.07.2021 Modifications after first review with industries

0.0.12 29.07.2021 Modifications after additional review with industries

0.1.0 02.08.2021 Draft for Review (S2R Consortium)

0.1.1 08.10.2021 Interim version including all comments received from S2R

0.1.2 16.11.2021 Interim version with consolidation of content

0.1.3 22.11.2021 Modifications after internal review

0.2.0 22.11.2021 Second Draft for Review (S2R Consortium)

0.2.1 08.12.2021 Modifications to reflect all S2R Consortium comments

0.2.2 16.12.2021 Modifications after internal review

0.3.0 17.12.2021 Stable FFFIS draft content mainly applicable to OBAPP for last consortium

review

0.3.1 18.01.2022 Modifications after comments received from Kontron

0.4.0 21.01.2022 Final FFFIS draft with content mainly applicable to OBAPP.

For ERA EECT Review as official deliverable of SC3/SC4

0.4.1 29.03.2022 Update to take into account EECT comments

0.4.2 15/04/2022 Clarification of API parameters and update to reflect EECT comments

(06/04/22)

0.5.0 06/05/2022 Consolidated FFFIS final draft to consider EECT review comments and API

parameters evolutions

0.5.1 10/06/2022 Consolidation of IP negotiation parameters during Session start

0.6.0 30/06/2022 Consolidated FFFIS final draft to consider EECT review comments (round #3)

and IP negotiation evolutions

0.6.1 2/08/2022 Update of API parameter structure and main comments from EECT

0.7.0 19/08/2022 Consolidated FFFIS with parameters and API messages encoded in ASN.1

format

0.7.1 23/09/2022 Consolidated FFFIS following open points resolutions work frame

0.8.0 27/09/2022 Update to take into account EECT review comments (09/09)

0.9.0 11/10/2022 Amendments from last EECT review round (EECT meeting on 7/10/2022)

0.10.0 18/10/2022 Amendments from last EECT review round (EECT meeting on 18/10/2022)

1.0.0 12/02/2023 Modifications proposed by ERA through “agency consistency check on FIS

and FFFIS” document and new Annex added to present the "Interoperability

requirements in EU” coming from “Agency proposal for categorisation

annexes for RMR Baseline 0” document.

4 / 58

Table of Contents

1 List of abbreviations ... 6

2 List of definitions .. 8
3 References .. 10

3.1 Applicability ... 10

3.2 List of References ... 10

4 Introduction .. 12

4.1 Purpose of this document ... 12

4.2 Scope of this document .. 12

4.3 Categorization of requirements ... 14

5 General principles .. 15

5.1 OBAPP: Interface between On-Board Applications(s) and On-Board FRMCS 15

5.2 Functions supported through the OBAPP interface ... 15

5.3 TSAPP: Interface between Trackside Applications(s) and FRMCS Core Network ... 16

5.4 Functions supported through the TSAPP interface .. 16

5.5 OBAPP and TSAPP Logical End-to-End connectivity... 17

5.6 FRMCS Service session in Tight Coupled mode ... 18

5.7 FRMCS Service session in Loose Coupled mode ... 19

6 Performance, Availability, Redundancy and Security .. 20

6.1 OBAPP Performance requirements ... 20

6.2 OBAPP Availability / Redundancy requirements .. 20

6.3 OBAPP Security requirements .. 20

6.4 TSAPP Performance requirements .. 21

6.5 TSAPP Availability/Redundancy requirements .. 21

6.6 TSAPP Security requirements ... 21

7 OBAPP Low layers specifications and protocol stacks .. 22

7.1 OBAPP Connectivity .. 22

7.2 OBAPP Physical interface ... 23

7.3 OBAPP Internet Protocol versions ... 23

7.4 OBAPP local IP allocation scheme .. 23

7.5 OBAPP Protocol stacks ... 24

8 TSAPP Low layers specifications and protocol stacks ... 25

8.1 TSAPP Connectivity .. 25

8.2 TSAPP Physical interface .. 25

8.3 TSAPP Internet Protocol versions ... 25

8.4 TSAPP local IP allocation scheme ... 25

8.5 TSAPP Protocol stacks ... 26

5 / 58

9 OBAPP Functional Services Messages and Dataflow ... 27

9.1 Overview of OBAPP API features .. 27

9.2 Terminology in OBAPP API features ... 28

9.3 Summary of the API features and corresponding message names: 29

9.4 Definition of the parameters used in the API features: .. 34

9.5 Event stream opening feature: .. 38

9.6 Local registration feature: .. 38

9.7 Session start feature: .. 40

9.8 Session status feature .. 41

9.9 Auxiliary function subscription feature ... 43

9.10 Auxiliary function notification feature ... 44

9.11 Auxiliary function query feature ... 44

9.12 Auxiliary function unsubscription feature ... 45

9.13 Session end feature .. 46

9.14 Incoming session start feature .. 46

9.15 Incoming session end feature ... 47

9.16 Local deregistration feature ... 48

9.17 Event Stream closing feature .. 48

9.18 OBAPP API Abnormal Cases .. 48

9.19 OBAPP API Dataflows ... 49

9.20 3GPP MCX Services at OBAPP interface .. 51

9.21 OBAPP Communication attributes exchanges (QoS mechanism) 51

10 TSAPP Functional Services message and dataflow .. 52

10.1 Description of TSAPP session API features .. 52

10.2 TSAPP API Abnormal Cases ... 52

10.3 TSAPP API Dataflows ... 52

10.4 3GPP MCX Services at TSAPP interface .. 52

10.5 TSAPP Communication attributes exchanges (QoS mechanism) 52

11 Annex A: ASN.1 notation of OBAPP API parameters and messages 53
12 Annex B: Interoperability requirements in EU .. 58

6 / 58

1 List of abbreviations

3GPP 3rd Generation Partnership Project

API Application Programming Interface

ATO Automatic Train Operation

CCTV Closed Circuit Television

CP Control Plane

CS / PS Circuit Switch / Packet Switch

DSD Driver Safety Device

ERTMS European Rail Traffic Management System

ETCS European Train Control System

EUG ERTMS Users Group

FFS For Further Study

FRMCS Future Railway Mobile Communication System

GSM-R Global System for Mobile Communications – Railway

GW Gateway

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

KPI Key Performance Indicator

MCG Mobile Communication Gateway

MCX 3GPP Mission Critical Services

MOTS Modified Off The Shelf

OBAPP On-Board Application reference point/interface

O&M Operations & Maintenance

PKI Public Key Infrastructure

PSK Phase-Shift Keying

QoS Quality of service

RAM Reliability Availability Maintainability

RAN Radio Access Network

RBC Radio Block Centre

REC Railway Emergency Call

RF Radio Frequency

SIP Session Initiation Protocol

SRS System Requirement Specification

SW Software

7 / 58

TCMS Train Control and Management System

TCN Train communication network

TLS Transport Layer Security

TOBA Telecom On-Board Architecture

TSAPP Trackside Application reference point/interface

TSI Technical Specification for Interoperability

TSI CCS Control Command and Signalling TSI

UE User Equipment

UIC Union Internationale des Chemins de Fer

UP User Plane

URS User Requirements Specification

WG (UIC) Work Group

8 / 58

2 List of definitions

Application

 Provides functionality to the end user to cover a certain communication need

necessary for current and future railway operations.

Communication services

Communication services enable two-way communication between two or more

authorised service users (i.e. applications) from applications towards other

applications/entities reachable through various networks.

Control Plane

The Control Plane (CP) carries signalling traffic between the network entities.

Control plane and User Plane are to be considered independently of one

another and can accordingly be managed separately between entities.

FRMCS Domain

 A FRMCS Domain is an administrative domain which comprises a Service
Domain and a Transport Domain under the control of an FRMCS Operator.

FRMCS System

 Telecommunication system conforming to FRMCS specifications.

FRMCS Service client

 Client that enables the use of the Communication Services and/or
Complementary Services for the railway applications.

FRMCS Service server

 Server that enables the use of the Communication Services and/or
Complementary Services for the railway applications.

On-Board FRMCS

System enabling FRMCS communication to on-board applications. The On-

Board FRMCS achieves a decoupling between On-Board Application(s) and

transport service. For some applications, the decoupling is also achieved for

the communication service.

Trackside FRMCS

System enabling FRMCS communication to trackside applications. The

Trackside FRMCS achieves a decoupling between Trackside Application(s)

and transport service. For some applications, the decoupling is also achieved

for the communication service.

Interface

9 / 58

 In this FFFIS, Interface and Reference Point describe the same notion, where

Reference Point is used when discussing architecture, whereas Interface is the

word used for the specification.

Low Layers

 The term “low layers” corresponds to the OSI (Open Systems Interconnection)

layers below the Application layer in the context of this FFFIS.

Lower Layers

 The term “lower layers” originates from the UNIFE Working Group “FRMCS

Lower Layers Requirements” and corresponds to the OSI layers 3 and below

in the context of an on-board common bus.

Reference Point

 Conceptual point applicable for interaction between functional services that

enables authorised functions, e.g. in the network, to access their services. In

this FFFIS, Interface and Reference Point describe the same notion, where

Reference Point is used when discussing architecture, whereas Interface is the

word used for the specification.

Transport service

It is a service that provides transport of user information and control signals

between corresponding reference points considering the required QoS for the

individual communication.

User Plane

The User Plane (UP) carries the user/application traffic. For the exchange of

information between the communication partners (payload), the User Plane

provides the necessary formats in order to provide the desired quality. Voice,

video and data require different formats, for instance Codec to enable

communication between partners. This is determined by the corresponding

User Plane instance on the application side and controlled accordingly.

10 / 58

3 References

3.1 Applicability

• References are either specific (identified by date of publication, edition number,

version number, etc.) or non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

3.2 List of References

[FRMCS-FRS] UIC, FRMCS, Functional Requirements Specification, FU-7120

[FRMCS-SRS] UIC, FRMCS, System Requirements Specification, FW-AT-7800

[TOBA-FRS] UIC, FRMCS, On-Board FRMCS – Functional Requirements
Specification, TOBA-7510

[FRMCS-FIS] UIC, FRMCS, Functional Interface Specification, FIS-7970

[3GPP TS 22.280] 3GPP, Technical Specification Group Services and System
Aspects; Mission Critical Services Common Requirements
(MCCoRe) Stage 1

[3GPP TS 23.280] 3GPP, Technical Specification Group Services and System
Aspects; Common functional architecture to support mission
critical services; Stage 2

[3GPP TS 23.281] 3GPP, Technical Specification Group Services and System
Aspects; Functional architecture and information flows to support
Mission Critical Video (MCVideo); Stage 2

[3GPP TS 23.282] 3GPP, Technical Specification Group Services and System
Aspects; Functional architecture and information flows to support
Mission Critical Data (MCData); Stage 2

[3GPP TS 23.379] 3GPP, Technical Specification Group Services and System
Aspects; Functional architecture and information flows to support
Mission Critical Push To Talk (MCPTT); Stage 2

[3GPP TS 24.281] 3GPP, Technical Specification Group Services and System
Aspects; Mission Critical Video (MCVideo) signalling control;
Protocol specification

[3GPP TS 24.282] 3GPP, Technical Specification Group Services and System
Aspects; Mission Critical Data (MCData) signalling control;
Protocol specification

[3GPP TS 24.379] 3GPP, Technical Specification Group Services and System
Aspects; Mission Critical Push To Talk (MCPTT) call control;
Protocol specification

[3GPP TS 33.180] 3GPP, Technical Specification Group Services and System
Aspects; Security of the Mission Critical (MC) service

[SUBSET-147] UNISIG ERTMS/ETCS and ATO over ETCS – FFFIS part:
Communication Layers

11 / 58

[RFC 9113] Hypertext Transfer Protocol Version 2 (HTTP/2) specifications,
JUNE 2022

[RFC 8259] The JavaScript Object Notation (JSON) Data Interchange Format,
December 2017

12 / 58

4 Introduction

4.1 Purpose of this document

4.1.1 This Form Fit Functional Interface Specification (FFFIS) specifies the following

interfaces: (I)

• OBAPP, reference point between the On-Board Applications and the On-Board

FRMCS, which is defined in [FRMCS-SRS],

• and TSAPP, reference point between the Trackside FRMCS and the Trackside

Applications, which is defined in [FRMCS-SRS].

4.1.2 Figure 1 below is a simplified FRMCS architecture. It depicts the main high-level

functional blocks and indicates the location of the OBAPP and TSAPP interfaces. (I)

Note: the difference between Interface and Reference Point is given in chapter 2 (List

of definitions).

4.2 Scope of this document

4.2.1 This FFFIS specifies the protocols, the messages and the format of the information

exchanged over the OBAPP and TSAPP interfaces which enable interfacing between

applications and the FRMCS System. (I)

4.2.2 This FFFIS cannot be used separately as the FRMCS specifications ([FRMCS-

FRS], [FRMCS-SRS], [FRMCS-FIS] and [TOBA-FRS]) have to be considered as a

whole. (I)

4.2.3 This FFFIS is part of the FRMCS specifications as depicted in figure below: (I)

Figure 1: Positions of OBAPP and TSAPP interfaces

13 / 58

4.2.4 The performance, availability, redundancy and security requirements applicable to

OBAPP and TSAPP interfaces are defined in chapter 6. (I)

4.2.5 An On-Board application using On-Board FRMCS uses the communication layers

defined in chapter 7. This FFFIS does not assume a train common bus in all cases,

but only referring to [SS-147] for the case there is a common bus. (I)

4.2.6 A Trackside application using the Trackside FRMCS uses the communication

layers defined in chapter 8 (I).

4.2.7 An On-Board application using On-Board FRMCS uses the API defined in chapter 9

(I).

4.2.8 A Trackside application using the Trackside FRMCS uses the API defined in

chapter 10 (I).

Figure 2: FRMCS specifications

14 / 58

4.3 Categorization of requirements

4.3.1 The requirements are categorised in (I):

• Mandatory for the System (indicated by ‘(M)’ at the end of the clause). These

requirements mean a condition set out in this specification that must be met without

exception in order to deliver a system ensuring the fulfilment of essential functional

and system needs, compliance to relevant standards and technical integration. The

mandatory requirements are identified as sentences using the keyword “shall”.

• Optional for the system (indicated by ‘(O)’ at the end of the clause). These

requirements may be used based on the implementers’ choice. When an option is

selected, the related requirement(s) of this specification becomes mandatory for the

system. The optional requirements are identified as sentences using the keyword

“should”.

• Information (indicated by “(I)” at the end of the clause). These statements provide

additional information to help the reader understanding a requirement.

15 / 58

5 General principles

Note: this chapter is for information purpose only. It provides a description of the

FRMCS messages going through the OBAPP and TSAPP leading to a better

understanding of the different modes to be supported. The FRMCS end-to-end

information is provided in the FRMCS Functional Interface Specifications [FRMCS-

FIS].

Editor’s note: TSAPP interface description is FFS. As a result, all information provided

in this chapter related to the TSAPP interface is for information only and cannot be

considered as definitive.

5.1 OBAPP: Interface between On-Board Applications(s) and On-Board
FRMCS

5.1.1 The OBAPP corresponds to the interface between the On-Board Application(s) and

the On-Board FRMCS. This interface ensures management of and access to the

communication services allowing the authentication, authorisation and quality of

service profile management requested by those applications. (I)

Note: information regarding the authentication and authorisation mechanisms can be

found in the section 6.3 and chapter 9.

5.1.2 User Plane data from and to the application(s) is carried over the OBAPP interface. (I)

5.1.3 Control Plane data exchange between application and On-Board FRMCS is

performed over the OBAPP interface. (I)

5.2 Functions supported through the OBAPP interface

5.2.1 The OBAPP Control Plane exposes three main functions: (I)

• Local Binding function: The Local Binding function provides functionalities to

establish a secure link between an On-Board Application and the On-Board FRMCS,

ensuring mutual authentication of both parties through the OBAPP as well as the

integrity and confidentiality of the information exchanges related to the OBAPP Control

Plane. The Local Binding function is spread over several mechanisms described in

section 6.3 for the OBAPP Security requirements and in chapter 9 for the API Local

registration and Event stream opening features. All On-Board Applications,

regardless their coupling mode (Tight or Loose), must be successfully authenticated

through the Local Binding function. Note: the coupled modes are described in the

section 5.6;

• Service Session function: The Service Session function provides functionalities to

establish or terminate connectivity to or from a remote end point for applications

operating in Loose Coupled mode. It is implemented through the API Service session

features described in chapter 9;

16 / 58

• Auxiliary function: The Auxiliary function provides functionalities for applications to

subscribe / unsubscribe to the status of the communication service feed exposed by

the On-Board FRMCS and to receive notifications related to this information feed. A

communication service enables communication either in a peer-to-peer user

configuration or within a group of authorized users. The status of the communication

service provides information about communication service availability. The recipient

of this status resides in the application stratum while the sender resides in the service

stratum. The status of the communication service may be available only if the

FRMCS client-server association is operational. The Auxiliary function is

implemented through the API Auxiliary function features described in chapter 9.

Editor’s note: Auxiliary function could provide other notifications (e.g.,

Positioning/Location information, FRMCS time). Definition of the status of the

communication service provided by the Auxiliary function will be reviewed after V1.

This is FFS.

5.3 TSAPP: Interface between Trackside Applications(s) and FRMCS Core
Network

5.3.1 The TSAPP corresponds to the interface between the Trackside Application(s) and the

Trackside FRMCS. This interface ensures management of and access to the

communication services allowing the authentication, authorisation, priority and

quality of service profile management requested by those applications. (I)

5.4 Functions supported through the TSAPP interface

Editor’s note: It’s assumed in the following that the functions supported at TSAPP

interface side will be similar to the functions supported at OBAPP interface side. The

detailed description of the TSAPP interface is FFS.

Figure 3: API features exposed by the OBAPP Control Plane interface

17 / 58

5.5 OBAPP and TSAPP Logical End-to-End connectivity

5.5.1 The logical end-to-end User Plane connectivity (between applications) and logical

Control Plane connectivity (between application and service server) flows through

the FRMCS system boundaries using a FRMCS message flow compatible with the

OBAPP and TSAPP interfaces specifications. (I)

5.5.2 Applications using the FRMCS System can be categorized in various Application

regimes depending on the nature and extent of usage of the OBAPP and TSAPP

interfaces. (I)

Application

regime

OBAPP / TSAPP coupling

mode

FRMCS Service

client in

application?

FRMCS Service

client in On-Board

/ Trackside

FRMCS?

Tight Tight Coupled mode Yes No

Loose Loose Coupled mode No Yes

Superloose Loose Coupled mode

(via agent)

No Yes

Editor’s Note: the applicability / feasibility of the Superloose Application Regime for

a trackside application is FFS.

Note: Superloose Application regime is defined as per the above table as the

application being OBAPP / TSAPP-unaware and interacting through an agent (out of

FRMCS specifications) implementing OBAPP / TSAPP on behalf of the application. A

communication via an agent is not valid for Tight coupled applications.

Note: refer to the [FRMCS-FIS] for more details about the end-to-end transaction

flows and description of the Coupled modes.

Table 1: Application regimes

18 / 58

5.6 FRMCS Service session in Tight Coupled mode

Note: The figure below depicts the Service session exchanges in Tight Coupled

mode. The Local Binding function, Auxiliary function and SIP Core are not shown in

the figure.

5.6.1 In Tight Coupled mode, after the Local Binding function (see section 5.2.1) has

been successfully performed, the embedded MCX client of the application

establishes the logical MCX connectivity based on 3GPP MCX protocol operations

with the necessary information. All exchanges at OBAPP and TSAPP sides between

the Application and the FRMCS System are based on standardised 3GPP MCX

services over IP (see section 9.20 and 10.4). (I)

Note: The On-Board FRMCS encompasses an Orchestration function available in

Tight and Loose coupled modes that enables the necessary routing and steering

capability for the user plane associated with a specific service session. This is not in

the scope of this FFFIS. The On-Board FRMCS Orchestration function is described

in the [FRMCS-SRS].

Editor’s note: the Trackside FRMCS Orchestration function description is FFS.

5.6.2 In Tight Coupled mode, the Application User Plane is carried out over OBAPP and

TSAPP through the embedded MCX client of the Application. Refer to section 9.20 and

section 10.4. The Application User Plane over OBAPP and TSAPP is secured depending

on the type of application. Refer to section 6.3 and section 6.6 for the Security

requirements. (I)

Figure 4: End-to-End Service session for Applications in Tight coupled mode

19 / 58

5.7 FRMCS Service session in Loose Coupled mode

Note: The figure below depicts the Service session exchanges in Loose Coupled

mode The Local Binding function, Auxiliary function and SIP Core are not shown in

this figure.

5.7.1 In Loose Coupled mode, the On-Board FRMCS initiates a FRMCS Service

registration between the FRMCS Service client (MCX Client in the figure) and the

FRMCS Service server (MCX Server in the figure). After the Local Binding function

(see section 5.2.1) has been successfully performed, the Application requests the

FRMCS System to establish a logical Application Control Plane based on 3GPP MCX

on its behalf. It does it by calling a dedicated application interface (API) exposed by

the On-Board FRMCS or by the Trackside FRMCS. The features supported by this

API are described in the Functional Services chapters (refer to chapter 9 and section

10.1). The On-Board FRMCS and Trackside FRMCS are in charge to translate these

API calls into the relevant calls to standardised 3GPP MCX protocol operations with

the necessary information. (I)

5.7.2 In Loose Coupled mode, the logical Application User Plane connectivity managed by

the application is carried out through the OBAPP and TSAPP over IP. This User Plane

dataflow is then managed by the FRMCS Service client (MCX Client in the figure)

located in the On-Board FRMCS and Trackside FRMCS. The OBAPP and TSAPP User

Plane should be secured depending on the type of application. Refer to section 6.3

and section 6.6 for the security requirements. (I)

Figure 5: End-to-End Service session for Applications in Loose coupled mode

20 / 58

6 Performance, Availability, Redundancy and Security

This chapter provides the requirements in terms of performance, availability,

redundancy, and security for both OBAPP and TSAPP.

6.1 OBAPP Performance requirements

6.1.1 The physical layer of the OBAPP interface at On-Board FRMCS side shall support a

minimum gross data rate of 100 Mbit/s. (M)

6.2 OBAPP Availability / Redundancy requirements

6.2.1 The OBAPP interface is designed to achieve the availability and redundancy

requirements in accordance with the principles defined in [SUBSET-147]. (I)

Editor’s note: the OBAPP requirement about the possibility for the application to use

one or more On-Board FRMCSs for data transmission is FFS.

6.3 OBAPP Security requirements

6.3.1 In the case of a connection to be established between an On-Board Application and

an On-Board FRMCS, and when they are connected to a train network compliant

with [SUBSET-147], their interface shall comply with the authentication mechanisms

specified in [SUBSET-147]. (M)

6.3.2 For application authentication on the OBAPP Control Plane, mutual authentication

based on client and server certificates shall be performed between the application

and the On-Board FRMCS using the Transport Layer Security (TLS) protocol. During

the TLS handshake, client (application) and server (On-Board FRMCS) send their

certificate and authenticate themselves. (M)

6.3.3 The integrity and confidentiality protection of the OBAPP Control Plane implemented

through the API features shall rely on the Transport Layer Security (TLS) protocol.

(M)

Editor’s note: The exact requirements regarding the TLS and its associated version

(1.2, 1.3 or higher) applicable to the OBAPP Control Plane implemented through the

API features are FFS. Several on-going open points (e.g. backward compatibility,

Certificate Authority management, Identifiers, mutual authentication with PKI based

key management, monitoring of traffic flow, etc.) related to the applicability of the

OBAPP CP security requirements are FFS.

6.3.4 When integrity and/or confidentiality protection is implemented at end-to-end level,

no additional protection of the OBAPP User Plane of the local link between the

application and the On-Board FRMCS is required. (I)

Editor’s note: In the first version of FRMCS, only applications which have end-to-end

protection will be implemented. For applications that do not have an end-to-end

protection (integrity and/or confidentiality) mechanism, the need for an appropriate

protection mechanism of the OBAPP User Plane of the local link is FFS. IPsec could

be an option, but other solutions could be also considered.

21 / 58

6.4 TSAPP Performance requirements

Editor’s note: TSAPP interface Performance requirements are FFS.

6.5 TSAPP Availability/Redundancy requirements

Editor’s note: TSAPP interface Availability and redundancy requirements are FFS.

6.6 TSAPP Security requirements

Editor’s note: TSAPP interface Security requirements are FFS.

22 / 58

7 OBAPP Low layers specifications and protocol stacks

7.1 OBAPP Connectivity

7.1.1 The On-Board Applications need to have connectivity to use the On-Board FRMCS.

This connectivity can be established according to different technical choices

depending on which device/entity the application is installed, e.g., commercial off-

the-shelf (COTS) computer, proprietary fixed equipment within a train. (I)

7.1.2 The figure below presents the two possibilities to logically connect an Application to

the On-Board FRMCS. (I)

7.1.3 In case the application does not support OBAPP requirements (physical and/or

logical), an agent supporting OBAPP is used in between to connect to the On-Board

FRMCS. The physical and logical interface specifications between the application

and agent are outside the scope of the FRMCS specifications. (I)

Note: refer to the [FRMCS-FIS] for more details about the end-to-end transaction

flows.

Figure 6: Logical implementation options for applications requiring access to On-Board FRMCS

23 / 58

7.2 OBAPP Physical interface

7.2.1 The physical interface of the OBAPP at On-Board FRMCS side is made of common

off-the-shelf technologies based on Ethernet (IEEE 802.3). (I)

7.2.2 When connected to a train network compliant with [SUBSET-147], the physical

interface of the OBAPP at On-Board FRMCS side shall be made in accordance with

[SUBSET-147]. (M)

Editor’s note: other physical interface possibilities such as Wi-Fi are FFS. On-Board

hardware platform development initiatives could be considered as soon as they are

mature enough for consideration.

7.2.3 The OBAPP interface should support the following physical interface requirements: (O)

• Support links over copper twisted-pair cable or over fiber-optical cable

• Use standardized physical connectors which are compliant with environmental

requirements of railways, for instance M12 in case of twisted-pair cable or 10GBASE-

SR connector in case of fiber-optical cable.

• Use cabling that is prepared for 10GBit/s link speeds

Editor’s note: the possibility for the OBAPP interface at On-Board FRMCS side to share

the physical interface with others IP flows is FFS.

7.3 OBAPP Internet Protocol versions

7.3.1 All messages exchanged over OBAPP interface shall be based on Internet Protocol

IPv6. (M)

Editor’s note: the support of IPv4, in addition to IPv6 for backward compatibility will

be investigated for next version of this specification.

7.4 OBAPP local IP allocation scheme

7.4.1 At the OBAPP interface side, the On-Board FRMCS is seen as a host in the train

network and hence it shall be configured in accordance with the IP plan of the train

network. The On-Board FRMCS, when in a train equipped with a Common Bus,

benefits from services offered by the Common Bus as defined in [SUBSET-147]. (I)

7.4.2 The local IP address of the On-Board FRMCS API Control Plane can be based on a

predefined configuration, set as a configuration parameter through the operation and

maintenance interface of the On-Board FRMCS. (I)

Editor’s note: improvement of the local IP address allocation of the On-Board FRMCS

API Control Plane and clarification of the path to request the service via HTTP are

FFS.

24 / 58

7.5 OBAPP Protocol stacks

7.5.1 The different protocol stacks that shall be used over the OBAPP interface between the

On-Board Application and the On-Board FRMCS are presented in the table below:

(M)

Note: refer to section 9.3.3 and following for more details about the HTTP usage for

the API features.

7.5.2 The data format of the OBAPP API shall be realized following JSON specifications

[RFC 8259]. (M)

Role OBAPP Message flow Protocol stack to be used

Local Binding Control

Plane

API features. Refer to

Chapter 9

HTTP/2 over TLS. Refer to standard

RFC 9113.

Service session User

Plane

Transparent applications

data UP in Loose Coupled

or Tight Coupled mode

IP Protocol

Service session

Control Plane

API features for

applications in Loose

Coupled mode. Refer to

Chapter 9

HTTP/2 over TLS. Refer to standard

RFC 9113.

Transparent MCX

message flow over IP for

applications in Tight

Coupled mode:

MCX framework protocol over IP.

See reference 3GPP TS 22.280, TS

23.280 and TS 33.180. Applicable

version number is provided in the

Reference chapter

Auxiliary function

Control Plane

API features. Refer to

Chapter 9

HTTP/2 over TLS. Refer to standard

RFC 9113.

Table 2: List of protocol stacks used over the OBAPP interface

25 / 58

8 TSAPP Low layers specifications and protocol stacks

8.1 TSAPP Connectivity

8.1.1 The Trackside Applications need to have connectivity to use the Trackside FRMCS.

This connectivity can be established according to different technical choices

depending on which device/entity the application is installed, e.g. commercial off-the-

shelf (COTS) computer, proprietary fixed equipment. It depends also on the location

of the physical Application entities and Trackside FRMCS. (I)

8.1.2 The communication network architecture and distance between the Trackside

Application and the Trackside FRMCS are fully dependant on implementation

choice of the Railway infrastructure manager. This is outside the scope of this

FFFIS. (I)

8.1.3 In case the application does not support TSAPP requirements (physical and/or logical),

an agent supporting TSAPP is used in between to connect to the Trackside FRMCS.

The physical and logical interface specifications between the application and agent

are outside the scope of the FRMCS specifications. (I)

Note: refer to the [FRMCS-FIS] for more details about the end-to-end transaction

flows.

8.2 TSAPP Physical interface

8.2.1 The physical interface of the TSAPP at Trackside FRMCS side is made of common

off-the-shelf technologies based on Ethernet (IEEE 802.3). (I)

8.2.2 The TSAPP interface should support the following physical interface requirements: (O)

• Support links over copper twisted-pair cable or over fiber-optical cable

• Use standardized physical connectors, for instance RJ45 or M12 in case of twisted-

pair cable or 10GBASE-SR or LR connector in case of fiber-optical cable.

8.3 TSAPP Internet Protocol versions

8.3.1 All messages exchanged over TSAPP interface shall be based on Internet Protocol

IPv6. (M)

Editor’s note: the support of IPv4, in addition to IPv6 for backward compatibility will

be investigated for next revision of this specification.

8.4 TSAPP local IP allocation scheme

8.4.1 The Trackside FRMCS shall expose on TSAPP an IP interface with an IP gateway

address that can be used by the Trackside Applications to send/receive User Plane

and Control Plane data to/from the remote Applications. (M)

26 / 58

8.5 TSAPP Protocol stacks

8.5.1 The different protocol stacks that shall be used over the TSAPP interface between the

Trackside Applications and Trackside FRMCS are presented in the table below: (M)

Role Message flow Protocol stack to be used

Local Binding Control

Plane*

API features HTTP/2 over TLS. Refer to

standard RFC 9113.

Service session User

Plane

Transparent applications data

UP in Loose Coupled or Tight

Coupled mode

IP Protocol

Service session Control

Plane

API features for applications in

Loose Coupled mode

HTTP/2 over TLS. Refer to

standard RFC 9113.

Transparent MCX message

flow over IP for applications in

Tight Coupled mode:

MCX framework protocol

over IP. See reference

3GPP TS 22.280, TS

23.280 and TS 33.180.

Applicable version number

is provided in the

Reference chapter

Auxiliary function

Control Plane*

API features HTTP/2 over TLS. Refer to

standard RFC 9113.

Editor’s note (*): Local Binding and Auxiliary functions on TSAPP are FFS. See section

5.4.

8.5.2 The data format of the TSAPP API shall be realized following JSON specifications

[RFC 8259]. (M)

Table 3: List of protocol stacks used over the TSAPP interface

27 / 58

9 OBAPP Functional Services Messages and Dataflow

9.1 Overview of OBAPP API features

OBAPP enables the following features between an application and the On-Board

FRMCS:

9.1.1 Event stream opening feature: This feature shall be used to request the creation of

the event stream enabling the On-Board FRMCS to send notifications to the On-

Board application. (M)

9.1.2 Local registration feature: This feature shall be used to perform the Local

registration between an On-Board application and the On-Board FRMCS. The local

registration to the On-Board FRMCS shall be carried out only once after the start of

the application. (M)

9.1.3 Session start feature: This feature shall be used to establish a communication

session between an On-Board application and a remote (Trackside or On-Board)

application. (M)

Editor’s note: The analysis of the potential impact on the Session start feature of a

Host-to-Network session establishment is FFS.

9.1.4 Session status feature: This feature should be used to get a list of all sessions that

may be opened between an On-Board application and a remote (Trackside or On-

Board) application, and that are still open. (O)

9.1.5 Auxiliary function subscription feature: This feature should be used to subscribe

to a set of FRMCS information notification. (O)

Note: the auxiliary function notification subscription is linked to the successful local

registration.

9.1.6 Auxiliary function notification feature: In case an On-Board application has

subscribed to an Auxiliary function information, this feature should be used to notify

the On-Board application about the subscribed Auxiliary function information. (O)

9.1.7 Auxiliary function query feature: This feature should be used to request the current

status of FRMCS information notification provided by the Auxiliary function. (O)

9.1.8 Auxiliary function unsubscription feature: In case an On-Board application has

subscribed to an Auxiliary function information, this feature should be used to

unsubscribe to Auxiliary function information notification. (O)

9.1.9 Session end feature: This feature shall be used to release a communication session

between an On-Board application and a remote (Trackside or On-Board) application.

(M)

9.1.10 Incoming session start feature: This feature shall be used to inform an On-Board

application of an incoming session start requested by a remote (Trackside or On-

Board) application. (M)

9.1.11 Incoming session end feature: This feature shall be used to inform the On-Board

application of an incoming session end requested by a remote (Trackside or On-

Board) application. The On-Board FRMCS can use this feature in case a session is

ended because, for instance, there is a breakdown of the communication session

detected at On-Board FRMCS side. (M)

28 / 58

9.1.12 Local deregistration feature: This feature shall be used to request a local de-

registration of the On-Board application from the On-Board FRMCS. (M)

9.1.13 Event stream closing feature: This feature shall be used to close the event stream

following the deregistration. (M)

Note: in the context of the API, the term application refers to the application instance,

which is a concrete running software occurrence of an application of a specific type.

Note: If the optional Auxiliary function subscription feature is selected, the

corresponding optional features (Auxiliary function notification and Auxiliary function

unsubscription) must be also selected.

9.1.14 The Local Binding function shall consist of: (M)

(i) A first step in which an application and the On-Board FRMCS shall mutually

authenticate using TLS, which is not part of the API. See section 6.3 for more details.

(ii) A second step in which the application, through the API Event stream opening

and Local registration features, shall request the local registration to the On-Board

FRMCS, including the transmission of the supported version(s) of OBAPP.

(iii) And a third step in which the On-Board FRMCS, through the API Local

registration feature, shall accept or reject the local registration, including for

incompatible OBAPP versions, and then notify the application of the decision and of

the chosen OBAPP version, if applicable.

9.1.15 In case an agent represents multiple applications, the agent is in charge to register

for each application. In such case, there is one Local binding phase per represented

application. These represented applications are considered independently at On-

Board FRMCS side. (I)

Note: an agent is an entity (as described in [FRMCS-SRS]) that implements the API

for applications that do not have this capability.

9.1.16 Any API features beside local registration feature and event stream opening feature

shall be conditioned on the successful execution of the Local Binding steps. (M)

9.2 Terminology in OBAPP API features

9.2.1 In this section, the following definitions apply to the different type of API messages:

(I)

• An application request is defined as a message sent from an application to the On-

Board FRMCS.

• An On-Board FRMCS answer is defined as a message sent from the On-Board

FRMCS to an application in response to an application request.

• An On-Board FRMCS notification is defined as a message sent from the On-Board

FRMCS to an application without being triggered by an application request.

• An On-Board FRMCS request is defined as a message sent from the On-Board

FRMCS to an application.

• An application answer is defined as a message sent from an application to the On-

Board FRMCS in response to an On-Board FRMCS request.

29 / 58

9.2.2 The following table summarizes the different types of API messages: (I)

Name From To Following

Application request Application On-Board

FRMCS

-

On-Board FRMCS answer On-Board

FRMCS

Application Application

request

On-Board FRMCS

notification

On-Board

FRMCS

Application -

On-Board FRMCS request On-Board

FRMCS

Application -

Application answer Application On-Board

FRMCS

On-Board

FRMCS request

Note: The fourth column (“Following”) presents the triggers to some messages. The

prerequisites for the messages are described in section 9.3.2.

9.3 Summary of the API features and corresponding message names:

9.3.1 The API features shall respect the message names presented in Table 5 below. The

table highlights the source and destination of the message through the message

type, and the type of coupling mode. The “Coupling” column indicates which

application is concerned by the message: “T” for Tight coupled applications and “L”

for Loose Coupled applications. (M)

Feature Message name Message type Coupli

ng

Event
stream
opening

FRMCS_EVENT_STREAM_OPENING_APPLICATION_REQUEST Application request T, L

Event
stream
opening

FRMCS_EVENT_STREAM_OPENING_ON-BOARD_FRMCS_ANSWER On-Board FRMCS
answer

T, L

Local
registration

FRMCS_LOCAL_REGISTRATION_APPLICATION_REQUEST Application request T, L

Local
registration

FRMCS_LOCAL_REGISTRATION_ON-BOARD_FRMCS_ANSWER On-Board FRMCS
answer

T, L

Session
start

FRMCS_SESSION_START_APPLICATION_REQUEST Application request L

Session
start

FRMCS_SESSION_START_ON-BOARD_FRMCS_FIRST_ANSWER On-Board FRMCS
answer

L

Session
start

FRMCS_SESSION_START_ON-BOARD_FRMCS_FINAL_ANSWER On-Board FRMCS
answer

L

Session
status

FRMCS_SESSION_STATUS_APPLICATION_REQUEST Application request L

Session
status

FRMCS_SESSION_STATUS_ON-BOARD_FRMCS_ANSWER On-Board FRMCS
answer

L

Auxiliary
function
subscription

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_APPLICATION_REQ
UEST

Application request T, L

Table 4: Summary of the different type of API messages.

30 / 58

Feature Message name Message type Coupli
ng

Auxiliary
function
subscription

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_ON-
BOARD_FRMCS_ANSWER

On-Board FRMCS
answer

T, L

Auxiliary
function
notification

FRMCS_AUXILIARY_FUNCTION_ON-
BOARD_FRMCS_NOTIFICATION

On-Board FRMCS
notification

T, L

Auxiliary
function
query

FRMCS_AUXILIARY_FUNCTION_QUERY_APPLICATION_REQUEST Application request T, L

Auxiliary
function
query

FRMCS_AUXILIARY_FUNCTION_QUERY_ON-
BOARD_FRMCS_ANSWER

On-Board FRMCS
answer

T, L

Auxiliary
function
unsubscripti
on

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_APPLICATION_
REQUEST

Application request T, L

Auxiliary
function
unsubscripti
on

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_ON-
BOARD_FRMCS_ANSWER

On-Board FRMCS
answer

T, L

Session end FRMCS_SESSION_END_APPLICATION_REQUEST Application request L

Session end FRMCS_SESSION_END_ON-BOARD_FRMCS_ANSWER On-Board FRMCS
answer

L

Incoming
session
start

FRMCS_INCOMING_SESSION_START_ON-
BOARD_FRMCS_REQUEST

On-Board FRMCS
request

L

Incoming
session
start

FRMCS_INCOMING_SESSION_START_APPLICATION_ANSWER Application answer L

Incoming
session end

FRMCS_INCOMING_SESSION_END_ON-
BOARD_FRMCS_NOTIFICATION

On-Board FRMCS
notification

L

Local
deregistrati
on

FRMCS_LOCAL_DEREGISTRATION_APPLICATION_REQUEST Application request T, L

Local
deregistrati
on

FRMCS_LOCAL_DEREGISTRATION_ON-BOARD_FRMCS_ANSWER On-Board FRMCS
answer

T, L

Event
Stream
closing

FRMCS_EVENT_STREAM_CLOSING_ON-
BOARD_FRMCS_NOTIFICATION

On-Board FRMCS
answer

T, L

Note: the usage of session related features by Tight Coupled mode applications is

not envisaged in the current version of this FFFIS.

9.3.2 The table below summarizes the request / answer relationships between the

messages and their prerequisites. (I)

Message name Prerequisite Answer to

FRMCS_EVENT_STREAM_OPENING_APPLICATIO
N_REQUEST
FRMCS_EVENT_STREAM_OPENING_ON-
BOARD_FRMCS_ANSWER

FRMCS_EVENT_STREAM_OPENING_APPLICA
TION_REQUEST

FRMCS_LOCAL_REGISTRATION_APPLICATION_R
EQUEST

Event stream
opening

FRMCS_EVENT_STREAM_OPENING_ON-
BOARD_FRMCS_ANSWER

Table 5: Summary of the API features and the corresponding message names.

31 / 58

Message name Prerequisite Answer to

FRMCS_LOCAL_REGISTRATION_ON-
BOARD_FRMCS_ANSWER

Event stream
opening

FRMCS_LOCAL_REGISTRATION_APPLICATION
_REQUEST

FRMCS_SESSION_START_APPLICATION_REQUES
T Local registration
FRMCS_SESSION_START_ON-
BOARD_FRMCS_FIRST_ANSWER Local registration

FRMCS_SESSION_START_APPLICATION_REQ
UEST

FRMCS_SESSION_START_ON-
BOARD_FRMCS_FINAL_ANSWER Local registration

FRMCS_SESSION_START_APPLICATION_REQ
UEST

FRMCS_SESSION_STATUS_APPLICATION_REQUE
ST Local registration
FRMCS_SESSION_STATUS_ON-
BOARD_FRMCS_ANSWER Local registration

FRMCS_SESSION_STATUS_APPLICATION_RE
QUEST

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_
APPLICATION_REQUEST Local registration
FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_
ON-BOARD_FRMCS_ANSWER Local registration

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTIO
N_APPLICATION_REQUEST

FRMCS_AUXILIARY_FUNCTION_ON-
BOARD_FRMCS_NOTIFICATION

Auxiliary function
subscription

FRMCS_AUXILIARY_FUNCTION_QUERY_APPLICA
TION_REQUEST Local registration
FRMCS_AUXILIARY_FUNCTION_QUERY_ON-
BOARD_FRMCS_ANSWER Local registration

FRMCS_AUXILIARY_FUNCTION_QUERY_APPL
ICATION_REQUEST

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTIO
N_APPLICATION_REQUEST

Auxiliary function
subscription

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTIO
N_ON-BOARD_FRMCS_ANSWER

Auxiliary function
subscription

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIP
TION_APPLICATION_REQUEST

FRMCS_SESSION_END_APPLICATION_REQUEST Session start
FRMCS_SESSION_END_ON-
BOARD_FRMCS_ANSWER Session start

FRMCS_SESSION_END_APPLICATION_REQUE
ST

FRMCS_INCOMING_SESSION_START_ON-
BOARD_FRMCS_REQUEST Local registration
FRMCS_INCOMING_SESSION_START_APPLICATI
ON_ANSWER Local registration

FRMCS_INCOMING_SESSION_START_ON-
BOARD_FRMCS_REQUEST

FRMCS_INCOMING_SESSION_END_ON-
BOARD_FRMCS_NOTIFICATION Local registration
FRMCS_LOCAL_DEREGISTRATION_APPLICATION
_REQUEST Local registration
FRMCS_LOCAL_DEREGISTRATION_ON-
BOARD_FRMCS_ANSWER Local registration

FRMCS_LOCAL_DEREGISTRATION_APPLICATI
ON_REQUEST

FRMCS_EVENT_STREAM_CLOSING_ON-
BOARD_FRMCS_NOTIFICATION Local registration

FRMCS_LOCAL_DEREGISTRATION_APPLICATI
ON_REQUEST

9.3.3 The following API messages shall use the HTTP messages as presented in the

table below. (M)

Feature API Message name HTTP message

Event stream opening FRMCS_EVENT_STREAM_OPENING_APPLICATION_REQUEST
HTTP request

method=GET

Event stream opening FRMCS_EVENT_STREAM_OPENING_ON-BOARD_FRMCS_ANSWER HTTP response

Local registration FRMCS_LOCAL_REGISTRATION_APPLICATION_REQUEST
HTTP request

method=POST

Local registration FRMCS_LOCAL_REGISTRATION_ON-BOARD_FRMCS_ANSWER HTTP response

Session start FRMCS_SESSION_START_APPLICATION_REQUEST
HTTP request

method=POST

Table 6: Summary of the request/answer relationships between messages.

32 / 58

Feature API Message name HTTP message

Session start FRMCS_SESSION_START_ON-BOARD_FRMCS_FIRST_ANSWER HTTP response

Session start FRMCS_SESSION_START_ON-BOARD_FRMCS_FINAL_ANSWER SSE

Session status FRMCS_SESSION_STATUS_APPLICATION_REQUEST
HTTP request

method=POST

Session status FRMCS_SESSION_STATUS_ON-BOARD_FRMCS_ANSWER HTTP response

Auxiliary function

subscription

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_APPLICATION_REQUE

ST

HTTP request

method=POST

Auxiliary function

subscription

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER

HTTP response

Auxiliary function

notification

FRMCS_AUXILIARY_FUNCTION_ON-BOARD_FRMCS_NOTIFICATION SSE

Auxiliary function query FRMCS_AUXILIARY_FUNCTION_QUERY_APPLICATION_REQUEST
HTTP request

method=POST

Auxiliary function query FRMCS_AUXILIARY_FUNCTION_QUERY_ON-

BOARD_FRMCS_ANSWER

HTTP response

Auxiliary function

unsubscription

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_APPLICATION_RE

QUEST

HTTP request

method=POST

Auxiliary function

unsubscription

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER

HTTP response

Session end FRMCS_SESSION_END_APPLICATION_REQUEST
HTTP request

method=POST

Session end FRMCS_SESSION_END_ON-BOARD_FRMCS_ANSWER HTTP response

Incoming session start FRMCS_INCOMING_SESSION_START_ON-BOARD_FRMCS_REQUEST SSE

Incoming session start FRMCS_INCOMING_SESSION_START_APPLICATION_ANSWER
HTTP request

method=POST

(*)

Incoming session end FRMCS_INCOMING_SESSION_END_ON-

BOARD_FRMCS_NOTIFICATION

SSE

Local deregistration FRMCS_LOCAL_DEREGISTRATION_APPLICATION_REQUEST
HTTP request

method=POST

Local deregistration FRMCS_LOCAL_DEREGISTRATION_ON-BOARD_FRMCS_ANSWER HTTP response

Event stream closing FRMCS_EVENT_STREAM_CLOSING_ON-

BOARD_FRMCS_NOTIFICATION

HTTP response

Note (*): The HTTP response to the

FRMCS_INCOMING_SESSION_START_APPLICATION_ANSWER message

(carried by a HTTP request) is not presented in the Table 7 as no API message is

associated to it.

9.3.4 The API shall use HTTP request with method = POST to carry every API message

REQUEST from the On-Board Application to the On-Board FRMCS, except for the

creation of the event stream where it shall use HTTP request with method = GET

as specified in [RFC 9113]. (M)

Table 7: HTTP functionality to be used by the API messages

33 / 58

9.3.5 The API shall use HTTP response to carry every API message ANSWER from the

On-Board FRMCS to the On-Board Application. (M)

9.3.6 The API shall use the HTTP status code field (refer to [RFC 2616]) contained in the

HTTP response in order to get the status of the HTTP request. (M)

9.3.7 The API shall use Server-Sent Events (SSE) based on EventSource interface to

carry every API message NOTIFICATION using the opened event stream from the

On-Board FRMCS to the On-Board Application. (M)

Note: The EventSource interface is web content's interface to server-sent events. An

EventSource instance opens a persistent connection to the HTTP server (On-Board

FRMCS) thanks to the Event stream opening feature (refer to section 9.1.1), which

allows to send events in text/event-stream format from On-Board FRMCS to the

application. Refer for instance to: https://html.spec.whatwg.org/multipage/server-

sent-events.html#server-sent-events.

Editor’s note: the management of the “keep alive” of the opened event stream during

the overall connection between the On-Board Application and the On-Board FRMCS

is FFS.

9.3.8 The API messages contained in the body of HTTP request and HTTP response

shall be encoded in JSON as specified in [RFC 8259]. (M)

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

34 / 58

9.4 Definition of the parameters used in the API features:

9.4.1 The parameter types that are used by the API features shall respect the format presented in Table 8 below. (M)

9.4.2 The content of the parameters in Table 8 that are defined with the ASN.1 UTF8String type shall be encoded based on the Normalization

Form KC (NFKC) as specified in the Unicode® Standard Annex #15 (see https://unicode.org/reports/tr15/). (M)

Editor’s note: About the coding of the UTF8String content, an analysis will be done after V1 to check if it is possible to rely only to JSON

(RFC 8259) and HTTP/2 (RFC 9113) definitions without referring to the NFKC. This is FFS.

Note: All parameters and messages are respectively presented in ASN.1 format and ASN.1 notation to structure them for a better

understanding. As mentioned previously, the API messages contained in the body of HTTP request and HTTP response will be encoded

in JSON. The ASN.1 notation of all OBAPP API parameters and messages is presented in the Annex A.

Editor’s note: The JSON encoding of API parameters and messages will be presented later (after V1) in an Annex.

Parameter name Details Description in ASN.1 format

1 Application category Provides the category of the application instance (ETCS, ATO,
CabRadio, etc.). When applicable, this parameter is used by the On-
Board FRMCS to manage the registration to the necessary 3GPP
MCX service(s).

ApplicationCategory ::= ENUMERATED {etcs, ato, cabRadio}

2 Static identifier of an
application

Unique identifier of an application instance
Refer to sections 9.4.5

ApplicationStaticId ::= UTF8String (SIZE(3..256))

3 Version of OBAPP Version of the interface: [major.minor] or empty if unsuccessful OBAppVersion ::= UTF8String (SIZE(0..5))

4 Coupling mode of the
application

Among Tight Coupled mode and Loose Coupled mode CouplingMode ::= ENUMERATED {tight, loose}

5 Application On-Board
identifier

Identifier of the application instance dynamically assigned at the On-
Board FRMCS, unique in the scope of the On-Board FRMCS. The
format of this parameter is based on UUID (see parameter 7). This
parameter is empty if request is unsuccessful

appOBId Uuid

https://unicode.org/reports/tr15/

35 / 58

Parameter name Details Description in ASN.1 format

6 Remote address Remote address of an application in the scope of session exchange
messages.
Refer to section 9.4.6

RemoteAddress ::= UTF8String (SIZE(3..256))

7 UUID UUID (Universally Unique Identifier, refer to RFC 4122) format used
for following parameters:

- 5, Application On-Board Identifier
- 9, Identifier of a session

Uuid ::= UTF8String (SIZE(36))

8 deleted deleted Deleted

9 Identifier of a session Identifier of the session, unique in the scope of the On-Board
FRMCS. The format of this parameter is based on UUID (see
parameter 7). This parameter is empty if request is unsuccessful

sessionId Uuid

10 Category of Auxiliary function
information

Category of Auxiliary function information e.g. status of the
communication service. Editor’s note: Only “status of the
communication service” is supported in FRMCS V1. Other
information such as location update, FRMCS time, observed QoS,
etc. are FFS.

AuxiliaryFunctionCategory ::= ENUMERATED{communicationStatus}

11 Update period for the
auxiliary function

Requested update period for the auxiliary function information in
seconds. 0 means “no periodic update”, only status changes are
sent to the Application. If periodic update value is greater or equal
to 1 then status changes are not sent spontaneously. The
information is transmitted to the Application periodically. Maximum
value is 120 seconds.

-- update period in seconds. 0 = on change event information -
-
AuxiliaryFunctionUpdatePeriod ::= INTEGER(0..120)

12 Value of auxiliary function
information

Value of auxiliary function information sent by the On-Board FRMCS
to the Application.
In V1, only the value of the “status of the communication service”
can be obtained. Refer to parameter 17, Status of the
communication service. Other values such as location, time, etc. are
FFS.

AuxFunctionValue ::= CHOICE{
 commStatValue CommStatValue,
 ffs NULL
}

13 Status of the request Additional description of the HTTP RESPONSE status code placed in
the Answer of a Request message.
The content of this status depends on which API Answer message it
is used in. There are 4 parameters associated to this status.
Refer to parameters 22, 23, 24, 25

reqStatus GenericReqStatus
reqStatus LocRegReqStatus
reqStatus SessionStartReqFirstStatus
reqStatus SessionStartReqFinalStatus

36 / 58

Parameter name Details Description in ASN.1 format

14 Communication category This parameter reflects the different categories of communication
(session) that can be established over the FRMCS according to the
[FRMCS FRS]. This parameter is used by the On-Board FRMCS to
initiate an end-to-end session. Based on this parameter, the On-
Board FRMCS assigns the right communication profile including the
QoS level to the session.
Refer to sections 9.4.7.
The possible modes applicable to the data and video
communications are respectively defined in parameters 26
(DataComm) and 27 (VideoComm)

 CommunicationCategory::= CHOICE{
 dataComm DataComm,
 videoComm VideoComm
}

15 Session acceptance decision Decision of the application regarding an incoming session.
The content of this parameter is based on the Generic status of the
request. Refer to parameter 22

sessionStartDecision GenericReqStatus

16 IP address IPv6 address to be used by the application as destination address for
the user plane data.
Editor’s note: Supporting both IPv4 and IPv6 is FFS. The
corresponding JSON schema reflecting the IP address in the API
messages is also FFS.

IPAddress::= UTF8String (SIZE(1..43))

17 Status of the communication
service

Value of the “Status of the communication service” provided by the
Auxiliary function. See parameter 12

CommStatValue ::= ENUMERATED{available, notAvailable}

18 Session status Provides the status of a given session as requested in the Session
status request message

SessionStatusReqStatus ::= ENUMERATED{established, inProgress,
networkNotReady, notRegistered, rejected}

19 Origin of the session
establishment

Provides the origin of the session establishment: local application or
incoming remote application

SessionEstablishmentOrigin ::= ENUMERATED{localApplication,
remoteApplication}

20 Status of an Auxiliary function
subscription

Provides the Auxiliary function subscription status AuxFunctionSubStatus ::= ENUMERATED{active, inactive}

21 Status of an Auxiliary function
unsubscription

Provides the Auxiliary function unsubscription status AuxFunctionUnsubStatus ::= ENUMERATED{rejectedNotSubscribed,
successfullyUnsubscribed, alreadyUnsubscribed}

22 Generic status of the request Provides the status of a request used in several API Answer
messages. The possible values are “accepted” or “rejected”. If the
status of the request is rejected, there is an additional field (256
characters) to provide more details

GenericReqStatus ::= CHOICE{
 accepted NULL,
 rejected UTF8String (SIZE(0..256))
}

23 Status of the Local
registration request

Provides the status of a Local registration request. This parameter is
used in the Local registration answer message. If the status of the
request is “not registered”, there is an additional field (256
characters) to provide more details

LocRegReqStatus ::= CHOICE{
 registered NULL,
 notRegistered UTF8String (SIZE(0..256))
}

37 / 58

Parameter name Details Description in ASN.1 format

24 Status of the Session start
request (first)

Provides the first status of a Session start request. This parameter is
used in the Session start first answer message.

SessionStartReqFirstStatus ::= ENUMERATED{inProgress,
networkNotReady, notRegistered, rejected}

25 Status of the Session start
request (final)

Provides the final status of a Session start request. This parameter is
used in the Session start final answer message.

SessionStartReqFinalStatus ::= ENUMERATED{established,
rejected}

26 Data communication mode The data communication mode is used by the Communication
category parameter. It reflects the possible values applicable to this
mode: basic or critical.

DataComm ::= ENUMERATED{basic, critical}

27 Video communication mode The video communication mode is used by the Communication
category parameter. It reflects the possible values applicable to this
mode: basic or critical.

VideoComm ::= ENUMERATED{basic, critical}

Table 8: Definition of the parameter types that are used in the API features.

38 / 58

9.4.3 The OBAPP interface to the On-Board FRMCS will have different versions as new

features will be introduced. Supported versions are communicated over the OBAPP.

For each interface version, a change log is maintained, and changes are categorised

into Major and Minor categories. (I)

9.4.4 The OBAPP version number of this FFFIS shall be V1.0. Where “1” is the major version

number and “0” the minor version number of the current version. (M)

9.4.5 The Static identifier of the application shall be unique in the scope of all FRMCS

application instances. The structure of FRMCS System identities that are used to set

up the relevant FRMCS services and communication link(s) with other FRMCS users

shall fulfil the requirements as specified in the [FRMCS-SRS]. (M)

9.4.6 The remote address of an application in the scope of OBAPP session exchange

messages shall fulfil the requirements as specified in the [FRMCS-SRS]. (M)

9.4.7 The communication profiles, containing the list of allowed QoS profiles for each

Communication category, are set as a configuration file through the operation and

maintenance interface of the On-Board FRMCS. During a session establishment, the

applicable communication profile is determined according to the value of the

Communication category provided by the application. (I)

Editor’s note: error handling within the API features and the related state diagrams,

are FFS.

Note: in the following clauses, the parameter types are referenced by number and

descriptive name as <#, string>.

9.5 Event stream opening feature:

9.5.1 The FRMCS_EVENT_STREAM_OPENING_APPLICATION_REQUEST shall be

an empty GET message with content-type “text/event stream”. (M)

Note: there is no ASN.1 notation for

FRMCS_EVENT_STREAM_OPENING_APPLICATION_REQUEST as it is a GET

message with no content.

9.5.2 The FRMCS_EVENT_STREAM_OPENING_ON-BOARD_FRMCS_ANSWER shall

contain the following information: (M)

• Identifier of the application dynamically assigned at the On-Board FRMCS

<5, application on-board identifier>.

9.5.3 ASN.1 notation for FRMCS_EVENT_STREAM_OPENING_ON-

BOARD_FRMCS_ANSWER is: (I)

EventStreamOpeningOBAnswer ::= SEQUENCE{
 appOBId Uuid
}

Editor’s note: assessment of the use of the event stream opening feature is FFS .

9.6 Local registration feature:

39 / 58

9.6.1 The FRMCS_LOCAL_REGISTRATION_APPLICATION_REQUEST shall contain

the following information: (M)

• Category of the registering application instance <1, application category>;

• Static identifier of the registering application instance <2, static identifier

of an application>;

• Identifier of the application dynamically provided by the On-Board

FRMCS at the event stream opening <5, application on-board identifier>.

• List of supported versions of OBAPP <list of <3, version of OBAPP>>.

9.6.2 In case an agent is connected to the On-Board FRMCS, the category of the

application instance shall be the category of the represented application instance.

(M)

9.6.3 In case an agent is connected to the On-Board FRMCS, the static identifier of the

application instance shall be the static identifier of the represented application

instance. (M)

Note: an agent is an entity (as described in [FRMCS-SRS]) that implements the API

for applications that do not have this capability.

9.6.4 The FRMCS_LOCAL_REGISTRATION_APPLICATION_REQUEST should

contain the following information: (O)

• Coupling mode of the registering application instance <4, coupling mode

of the application>. In the case this value is not provided, the per default

value is “Loose coupled mode”.

9.6.5 ASN.1 notation for FRMCS_LOCAL_REGISTRATION_APPLICATION_REQUEST

is: (I)

LocalRegAppReq ::= SEQUENCE{
 appCategory ApplicationCategory,
 staticId ApplicationStaticId,
 appOBId Uuid,
 obAppVersionList OBAppVersionList,
 couplingMode CouplingMode DEFAULT loose
}
-- Where: --
OBAppVersionList ::= SET OF OBAppVersion

9.6.6 The FRMCS_LOCAL_REGISTRATION_ON-BOARD_FRMCS_ANSWER shall

contain the following information: (M)

• Status of the request <13, request status>;

• Chosen version of OBAPP in case of successful registration <3, version of

OBAPP>.

Note: the status of the request may include the rationale in case of failure.

9.6.7 ASN.1 notation for FRMCS_LOCAL_REGISTRATION_ON-

BOARD_FRMCS_ANSWER is: (I)

LocalRegFRMCSAnswer ::=SEQUENCE{
 reqStatus LocRegReqStatus,
 selectedObAppVer OBAppVersion
}

40 / 58

9.7 Session start feature:

9.7.1 The FRMCS_SESSION_START_APPLICATION_REQUEST shall contain the

following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier>;

• Local Application IP address to be used by the On-Board FRMCS as

destination address for the User Plane data in case of successful session

establishment <16, IP address >;

• List of recipients of the communication with the following information for

each recipient <list of>:

o Remote address of the recipient of the communication <6, remote

address>;

o Category of communication applied to the session <14,

communication category>;

Editor’s note: FRMCS Multipath invoked at Application level will be considered after

FRMCS V1. This point is FFS.

Editor’s note: the handling of group communication is FFS:

1. In the case of groupcast, the session is addressed to one group identifier and the

list contains one item.

2. In the case of ad-hoc group communication in which the service client (e.g. MC

client) creates the group identifier after receiving the session start request, the list is

filled with the members of the group.

3. In the case of no dedicated service for group communication, the session for a

group of session can be broken down in multiple individual calls of session start

request.

9.7.2 ASN.1 notation for FRMCS_SESSION_START_APPLICATION_REQUEST is: (I)

FRMCSSessionStartAppReq ::= SEQUENCE{
 appOBId Uuid,
 localAppIPAddress IPAddress,
 recipientList RecipientList
}
-- Where: --
RecipientList ::= SET OF Recipient

Recipient ::= SEQUENCE{
 remoteAddress RemoteAddress,
 communicationCategory CommunicationCategory
}

9.7.3 The FRMCS_SESSION_START_ON-BOARD_FRMCS_FIRST_ANSWER is sent

directly after the session start request by the On-Board FRMCS and shall contain

the following information: (M)

• Status of the request (in progress, network not ready, not registered or

rejected) <13, request status>;

41 / 58

• Identifier of the session <9, identifier of a session>. This parameter is

empty if status of the request is different from “in progress”.

9.7.4 ASN.1 notation for FRMCS_SESSION_START_ON-

BOARD_FRMCS_FIRST_ANSWER is: (I)

FRMCSSessionStartFirstAns ::= SEQUENCE{
 reqStatus SessionStartReqFirstStatus,
 sessionId Uuid OPTIONAL
}

9.7.5 The FRMCS_SESSION_START_ON-BOARD_FRMCS_FINAL_ANSWER is sent

by the On-Board FRMCS when it has resolved all addresses and shall contain the

following information: (M)

• Status of the request (established or rejected) <13, request status>;

• Identifier of the session <9, identifier of a session>;

• Local On-Board FRMCS IP address to be used by the On-Board

Application as destination address for the User Plane data in case of

successful session establishment <16, IP address >.

9.7.6 The FRMCS_SESSION_START_ON-BOARD_FRMCS_FINAL_ANSWER shall be

sent by the On-Board FRMCS only if the status of the request placed in the

FRMCS_SESSION_START_ON-BOARD_FRMCS_FIRST_ANSWER is “in

progress” (M)

9.7.7 ASN.1 notation for FRMCS_SESSION_START_ON-

BOARD_FRMCS_FINAL_ANSWER is: (I)

FRMCSSessionStartFRMCSFinalAns ::= SEQUENCE{
 reqStatus SessionStartReqFinalStatus,
 sessionId Uuid,
 -- next field is present only in case reqStatus is established --
 localDestFRMCSIPAddress IPAddress OPTIONAL
}

9.8 Session status feature

9.8.1 In case the optional Session status feature is selected (refer to 9.1.4), the

FRMCS_SESSION_STATUS_APPLICATION_REQUEST shall contain the

following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier>.

9.8.2 The FRMCS_SESSION_STATUS_APPLICATION_REQUEST should contain the

following information: (O)

• A list of sessions for which the status is requested with the following

information <list of>:

o Identifier of the session <9, identifier of a session>

Note: if this parameter is not provided, the gateway assumes that all active sessions

are required.

9.8.3 ASN.1 notation for FRMCS_SESSION_STATUS_APPLICATION_REQUEST is: (I)

42 / 58

FRMCSSessionStatAppReq::=SEQUENCE{
 appOBId Uuid,
 sessionIdList SessionIdList OPTIONAL
}
-- Where: --
SessionIdList ::= SET OF Uuid

9.8.4 In case the optional Session status feature is selected (refer to 9.1.4), the

FRMCS_SESSION_STATUS_ON-BOARD_FRMCS_ANSWER shall contain: (M)

• Status of the request <13, request status>;

• A list of active sessions with the following information <list of>:

o Identifier of the session <9, identifier of a session>

o Status of the session (pending or established) <18, session status>

o Origin of the session start request (application or incoming) <19,

origin of the session establishment>

o Category of communication applied to the session <14,

communication category>

o Local On-Board FRMCS IP address to be used by the On-Board

application as destination address for the User Plane data of this

session <16, IP address>

o Local Application IP address to be used by the On-Board FRMCS as

destination address for the User Plane data <16, IP address >;

o List of recipients with the following information <list of>:

• Remote address of a participant to the communication<6,

remote address>

Note: This On-Board FRMCS answer has two behaviours depending on the optional

parameter section 9.8.2. In the case it is not provided, all active sessions are

returned. If it is provided, the returned list is filtered with the requested sessions.

Note: only the existing active sessions are returned. If the list provided in section

9.8.2 contains a non-existing or inactive session, no error is returned.

9.8.5 ASN.1 notation for FRMCS_SESSION_STATUS_ON-BOARD_FRMCS_ANSWER

is: (I)

FRMCSSessionStatAns::=SEQUENCE{
 reqStatus GenericReqStatus,
 activeSessionList ActiveSessionList
}
-- Where: --
ActiveSessionList ::= SET OF ActiveSession

 ActiveSession::=SEQUENCE{
 sessionId Uuid,
 sessionStatus SessionStatusReqStatus,
 sessionOriginator SessionEstablishmentOrigin,
 communicationCategory CommunicationCategory,
 localDestFRMCSIPAddress IPAddress,
 localAppIPAddress IPAddress,
 remoteAddressList RemoteAddressList

43 / 58

 }

RemoteAddressList ::= SET OF RemoteAddress

9.9 Auxiliary function subscription feature

9.9.1 In case the optional Auxiliary function subscription feature is selected (refer to

9.1.5), the

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_APPLICATION_REQUEST

shall contain the following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier>;

• List of information to which the application requests the subscription with

the following parameters <list of>:

o name of the information <10, auxiliary function information category>

o requested period of the subscription <11, update period for the

auxiliary function>.

9.9.2 ASN.1 notation for

FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_APPLICATION_REQUEST

is: (I)

AuxiliaryFunctionSubReq ::= SEQUENCE{
 appOBId Uuid,
 auxFunctionSubList AuxFunctionSubList
}
-- Where: --
AuxFunctionSubList ::= SET OF AuxFunctionSubDef

 AuxFunctionSubDef::= SEQUENCE{
 auxiliaryFunctionCategory AuxiliaryFunctionCategory,
 auxiliaryFunctionUpdatePeriod AuxiliaryFunctionUpdatePeriod
 }

9.9.3 In case the optional Auxiliary function subscription feature is selected (refer to

9.1.5), tthe FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER shall contain the following information: (M)

• Status of the request <13, request status>;

• List of subscription status <list of>:

o name of the information <10, auxiliary function information

category>

o Status of an Auxiliary function subscription <20, status of a

subscription>>.

9.9.4 ASN.1 notation for FRMCS_AUXILIARY_FUNCTION_SUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER is: (I)

AuxiliaryFunctionSubAns ::= SEQUENCE{
 reqStatus GenericReqStatus,
 auxFunctionStatList AuxFunctionStatList
}

44 / 58

-- Where: --
AuxFunctionStatList ::= SET OF AuxFunctionStat

 AuxFunctionStat ::= SEQUENCE{
 auxiliaryFunctionCategory AuxiliaryFunctionCategory,
 auxFunctionSubStatus AuxFunctionSubStatus
 }

9.10 Auxiliary function notification feature

9.10.1 In case the optional Auxiliary function notification feature is selected (refer to 9.1.6),

the FRMCS_AUXILIARY_FUNCTION_ON-BOARD_FRMCS_NOTIFICATION

shall contain the following information: (M)

• Name of the information corresponding to the value <10, auxiliary function

information category>.

• Value of one of the information to which the application has previously

subscribed <12, value of auxiliary function information>;

Note: The Auxiliary function notification can be sent to the application spontaneously

in case of status change (e.g. the status of the communication service has changed

from “not available” to “available”) or periodically based on the requested period

parameter even if there is no status change. Refer to parameter 11 in Table 8.

9.10.2 ASN.1 notation for FRMCS_AUXILIARY_FUNCTION_ON-

BOARD_FRMCS_NOTIFICATION is: (I)

AuxiliaryFunctionNotification ::= SEQUENCE{
 auxFunctionName AuxiliaryFunctionCategory,
 auxFunctionValue AuxFunctionValue
}

9.11 Auxiliary function query feature

9.11.1 In case the optional Auxiliary function query feature is selected (refer to 9.1.7), the

FRMCS_AUXILIARY_FUNCTION_QUERY_APPLICATION_REQUEST shall

contain the following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier> ;

• List of information for which a status update is requested <10, auxiliary

function information category>>.

9.11.2 ASN.1 notation for

FRMCS_AUXILIARY_FUNCTION_QUERY_APPLICATION_REQUEST is: (I)

AuxFunctionQueryAppReq ::=SEQUENCE{
 appOBId Uuid,
 auxFunctionNameList AuxiliaryFunctionCategoryList
}
-- Where: --
AuxiliaryFunctionCategoryList ::=SET OF AuxiliaryFunctionCategory

45 / 58

9.11.3 In case the optional Auxiliary function query feature is selected (refer to 9.1.7), the

FRMCS_AUXILIARY_FUNCTION_QUERY_ON-BOARD_FRMCS_ANSWER shall

contain the following information: (M)

• Status of the request <13, request status>;

• List of last up-to-date statuses of the information to which the application

requested a status update <list of>:

o Name of the information corresponding to the value <10, auxiliary

function information category>;

o Value <12, value of auxiliary function information>;

9.11.4 ASN.1 notation for FRMCS_AUXILIARY_FUNCTION_QUERY_ON-

BOARD_FRMCS_ANSWER is: (I)

AuxFunctionQueryAns ::= SEQUENCE{
 reqStatus GenericReqStatus,
 auxFunctionNotificationList AuxFunctionNotificationList
}
-- Where: --
AuxFunctionNotificationList ::= SET OF AuxiliaryFunctionNotification

 AuxiliaryFunctionNotification ::= SEQUENCE{
 auxFunctionName AuxiliaryFunctionCategory,
 auxFunctionValue AuxFunctionValue
 }

9.12 Auxiliary function unsubscription feature

9.12.1 In case the optional Auxiliary function unsubscription feature is selected (refer to

9.1.8), the

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_APPLICATION_REQUES

T shall contain the following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier> ;

• List of information to which the application requests the unsubscription

<list of <10, auxiliary function information category>>. If there is no list, all

subscriptions are removed.

9.12.2 ASN.1 notation for

FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_APPLICATION_REQUES

T is: (I)

AuxiliaryFunctionUnsubReq ::= SEQUENCE{
 appOBId Uuid,
 auxFunctionUnsubList AuxiliaryFunctionCategoryList OPTIONAL
}
-- Where: --
AuxiliaryFunctionCategoryList ::= SET OF AuxiliaryFunctionCategory

9.12.3 In case the optional Auxiliary function unsubscription feature is selected (refer to

9.1.8), the FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER shall contain the following information: (M)

46 / 58

• Status of the request <13, request status>;

• List of unsubscriptions status with the following information:

o Name of the information <10, auxiliary function information category>

o Status of the unsubscription (successful, failed because not

subscribed to this information, already unsubscribed) <list of <21,

status of an unsubscription>>.

9.12.4 ASN.1 notation for FRMCS_AUXILIARY_FUNCTION_UNSUBSCRIPTION_ON-

BOARD_FRMCS_ANSWER is: (I)

AuxiliaryFunctionUnsubAns ::= SEQUENCE{
 reqStatus GenericReqStatus,
 auxFunctionUnsubStatList AuxFunctionUnsubStatList
}
-- Where: --
AuxFunctionUnsubStatList ::= SET OF AuxFunctionUnsubStat

 AuxFunctionUnsubStat ::= SEQUENCE{
 auxiliaryFunctionCategory AuxiliaryFunctionCategory,
 auxFunctionUnsubStatus AuxFunctionUnsubStatus
 }

9.13 Session end feature

9.13.1 The FRMCS_SESSION_END_APPLICATION_REQUEST shall contain the

following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier> ;

• Identifier of the session to be ended <9, identifier of a session>.

9.13.2 ASN.1 notation for FRMCS_SESSION_END_APPLICATION_REQUEST is: (I)

FRMCSSessionEndReq::= SEQUENCE{
 appOBId Uuid,
 sessionId Uuid
}

9.13.3 The FRMCS_SESSION_END_ON-BOARD_FRMCS_ANSWER shall contain the

following information: (M)

• Status of the request <13, request status>.

9.13.4 ASN.1 notation for FRMCS_SESSION_END_ON-BOARD_FRMCS_ANSWER is:

(I)

FRMCSSessionEndAns ::=SEQUENCE{
 reqStatus GenericReqStatus
}

9.14 Incoming session start feature

47 / 58

9.14.1 The FRMCS_INCOMING_SESSION_START_ON-BOARD_FRMCS_REQUEST

shall contain the following information: (M)

• Remote address of the initiator of the communication <6, remote

address>;

• Category of communication applied to the session <14, communication

category>;

• Session identifier of the incoming communication <9, identifier of a

session>;

• Local On-Board FRMCS IP address to be used by the On-Board

application as destination address for the User Plane data of this session

<16, IP address>.

9.14.2 ASN.1 notation for FRMCS_INCOMING_SESSION_START_ON-

BOARD_FRMCS_REQUEST is: (I)

IncomingSessionStartReq ::=SEQUENCE{
 remoteAddress RemoteAddress,
 communicationCategory CommunicationCategory,
 sessionId Uuid,
 localDestFRMCSIPAddress IPAddress
}

9.14.3 The FRMCS_INCOMING_SESSION_START_APPLICATION_ANSWER shall

contain the following information: (M)

• Session identifier of the incoming communication <9, identifier of a

session>;

• Session start acceptance decision <15, session acceptance decision>.

• Local Application IP address to be used by the On-Board FRMCS as

destination address for the User Plane data in case of successful session

establishment <16, IP address >. This parameter is empty if status of the

request is rejected;

9.14.4 ASN.1 notation for

FRMCS_INCOMING_SESSION_START_APPLICATION_ANSWER is: (I)

IncomingSessionStartAppAns ::= SEQUENCE{
 sessionId Uuid,
 sessionStartDecision GenericReqStatus,
 localAppIPAddress IPAddress OPTIONAL
}

9.15 Incoming session end feature

9.15.1 The FRMCS_INCOMING_SESSION_END_ON-BOARD_FRMCS_NOTIFICATION

shall contain the following information: (M)

• Session identifier of the incoming communication being terminated <9,

identifier of a session>.

9.15.2 ASN.1 notation for FRMCS_INCOMING_SESSION_END_ON-BOARD_FRMCS_

NOTIFICATION is: (I)

IncomingSessionEndNotif ::=SEQUENCE{

48 / 58

 sessionId Uuid
}

9.16 Local deregistration feature

9.16.1 The FRMCS_LOCAL_DEREGISTRATION_APPLICATION_REQUEST shall

contain the following information: (M)

• On-board identifier of the requesting application <5, application on-board

identifier>;

9.16.2 ASN.1 notation for

FRMCS_LOCAL_DEREGISTRATION_APPLICATION_REQUEST is: (I)

LocalDeregAppReq::=SEQUENCE{
 appOBId Uuid
}

9.16.3 The FRMCS_LOCAL_DEREGISTRATION_ON-BOARD_FRMCS_ANSWER shall

contain the following information: (M)

• Status of the request <13, request status>.

9.16.4 ASN.1 notation for FRMCS_LOCAL_DEREGISTRATION_ON-

BOARD_FRMCS_ANSWER is: (I)

LocalDeregAppans::=SEQUENCE{
 reqStatus GenericReqStatus
}

9.17 Event Stream closing feature

9.17.1 Following the FRMCS_LOCAL_DEREGISTRATION_ON-

BOARD_FRMCS_ANSWER, the On-Board FRMCS shall send

FRMCS_EVENT_STREAM_CLOSING_ON-BOARD_FRMCS_NOTIFICATION to

the event stream with no content (HTTP Response Status 204). (M)

Note: there is no ASN.1 notation for FRMCS_EVENT_STREAM_CLOSING_ON-

BOARD_FRMCS_NOTIFICATION as there is no content.

9.18 OBAPP API Abnormal Cases

Editor’s note: OBAPP API abnormal cases must be consolidated. Further analysis in

terms of security implications is also required. This is FFS. The following statements

are provided for information but will be reviewed in a next version.

Note: in following requirements, a failure is defined as any event that requires the

application to restart.

9.18.1 In case of failure of the application, the On-Board FRMCS should expect a new local

registration of the application. (I)

9.18.2 After receiving a local registration request of an already registered application, e.g.

following a failure, the On-Board FRMCS recovers the dynamic identifier of the

49 / 58

previous registration and return it to the Application without performing another

registration. (I)

9.18.3 After receiving a session start request of an application already having open

session(s) following a failure, the On-Board FRMCS attempts to recover the session

identifier of the previous session(s) and return it to the application. (I)

9.18.4 After receiving a subscription to the Auxiliary function notification of an application

already having subscriptions, e.g., following a failure, the On-Board FRMCS returns

the list of existing subscriptions (name of the subscription and update period) to the

application. (I)

9.19 OBAPP API Dataflows

9.19.1 Following figure presents an example of API dataflows with the optional Auxiliary

function activated for a Tight Coupled application. (I)

Figure 7: Dataflow example for Tight coupled application

50 / 58

9.19.2 Following figure presents an example of API dataflows with the optional Auxiliary

function and Session status features activated for a Loose Coupled application. (I)

Figure 8: Dataflow example for a Loose Coupled application.

51 / 58

9.20 3GPP MCX Services at OBAPP interface

9.20.1 3GPP MCX functions exchanged through the OBAPP interface is based on 3GPP TS

22.280 and TS 23.280 technical specifications. Release 17 is the basis. (I)

9.20.2 The list of 3GPP MCPTT functions exchanged through the OBAPP interface is based

on 3GPP TS 23.379 and 24.379 Rel. 17, and for MCVideo on 3GPP TS 23.281 and

TS24.281 Rel 17 technical specifications. (I)

Note: MCVideo is not expected in the first FRMCS version since there is not clear

definition of any function making use of it.

9.20.3 The list of 3GPP MCData functions exchanged through the OBAPP interface is based

on the 3GPP TS 23.282 and TS 24.282 Rel. 17 technical specifications. (I)

Note: At OBAPP interface side, the MCX message flow applicable to the Tight Coupled

mode applications is transparent to OBAPP. Refer to section 7.5. The [FRMCS-FIS]

defines the end-to-end transaction flows and covers the communication applications

based on the use of the 3GPP MCX services. The applicable 3GPP MCX references

are listed and maintained in [FRMCS-SRS].

9.21 OBAPP Communication attributes exchanges (QoS mechanism)

Refer to section 9.4.6

52 / 58

10 TSAPP Functional Services message and dataflow

10.1 Description of TSAPP session API features

Editor’s note: TSAPP session API features requirements are FFS.

10.2 TSAPP API Abnormal Cases

Editor’s note: TSAPP API abnormal cases requirements are FFS.

10.3 TSAPP API Dataflows

Editor’s note: TSAPP session API Dataflows are FFS.

10.4 3GPP MCX Services at TSAPP interface

10.4.1 3GPP MCX functions exchanged through the TSAPP interface is based on 3GPP TS

22.280 and TS 23.280 technical specifications. Release 17 is the basis. (I)

10.4.2 The list of 3GPP MCPTT functions exchanged through the TSAPP interface is based

on 3GPP TS 23.379 and 24.379 Rel. 17, and for MCVideo on 3GPP TS 23.281 and

TS24.281 Rel 17 technical specifications. (I)

Note: MCVideo is not expected in the first FRMCS version since there is not clear

definition of any function making use of it.

10.4.3 The list of 3GPP MCData functions exchanged through the TSAPP interface is based

on the 3GPP TS 23.282 and TS 24.282 Rel. 17 technical specifications. (I)

Note: At TSAPP interface side, the MCX message flow applicable to the Tight Coupled

mode applications is transparent to TSAPP. Refer to section 8.5. The [FRMCS-FIS]

defines the end-to-end transactions flows and covers the communication applications

based on the use of the 3GPP MCX services. The applicable 3GPP MCX references

are listed in [FRMCS-SRS].

10.5 TSAPP Communication attributes exchanges (QoS mechanism)

Editor’s note: TSAPP Communication attributes exchanges requirements are FFS.

53 / 58

11 Annex A: ASN.1 notation of OBAPP API parameters and
messages

--<ASN1.HugeInteger World-Schema.FRMCS.FFFIS>--

World-Schema DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

--

-- OBapp PARAMETERS --

--

 ActiveSession::=SEQUENCE{

 sessionId Uuid,

 sessionStatus SessionStatusReqStatus,

 sessionOriginator SessionEstablishmentOrigin,

 communicationCategory CommunicationCategory,

 localDestFRMCSIPAddress IPAddress,

 localAppIPAddress IPAddress,

 remoteAddressList RemoteAddressList

}

 ActiveSessionList ::= SET OF ActiveSession

 ApplicationCategory ::= ENUMERATED {etcs, ato, cabRadio}

 ApplicationStaticId::= UTF8String (SIZE(3..256))

 AuxFunctionNotificationList ::= SET OF AuxiliaryFunctionNotification

 AuxFunctionStat ::= SEQUENCE{

 auxiliaryFunctionCategory AuxiliaryFunctionCategory,

 auxFunctionSubStatus AuxFunctionSubStatus

 }

 AuxFunctionStatList ::= SET OF AuxFunctionStat

 AuxFunctionSubDef::= SEQUENCE{

 auxiliaryFunctionCategory AuxiliaryFunctionCategory,

 auxiliaryFunctionUpdatePeriod AuxiliaryFunctionUpdatePeriod

 }

 AuxFunctionSubList ::= SET OF AuxFunctionSubDef

 AuxFunctionSubStatus ::= ENUMERATED{active, inactive}

 AuxFunctionUnsubStat ::= SEQUENCE{

 auxiliaryFunctionCategory AuxiliaryFunctionCategory,

 auxFunctionUnsubStatus AuxFunctionUnsubStatus

 }

 AuxFunctionUnsubStatList ::= SET OF AuxFunctionUnsubStat

 AuxFunctionUnsubStatus ::= ENUMERATED{rejectedNotSubscribed,

successfullyUnsubscribed, alreadyUnsubscribed}

54 / 58

 AuxFunctionValue ::= CHOICE{

 commStatValue CommStatValue,

 ffs NULL

 }

 CommStatValue ::= ENUMERATED{available, notAvailable}

 AuxiliaryFunctionCategory ::= ENUMERATED{communicationStatus}

 AuxiliaryFunctionCategoryList ::=SET OF AuxiliaryFunctionCategory

 -- update period in seconds. 0 = on change event information --

 AuxiliaryFunctionUpdatePeriod ::= INTEGER(0..120)

 AuxiliaryFunctionValue ::= UTF8String (SIZE(1..1024))

 CommunicationCategory::= CHOICE{

 dataComm DataComm,

 videoComm VideoComm

 }

 CouplingMode ::= ENUMERATED {tight, loose}

 DataComm ::= ENUMERATED{basic, critical}

 GenericReqStatus ::= CHOICE{

 accepted NULL,

 rejected UTF8String (SIZE(0..256))

 }

 IPAddress::= UTF8String (SIZE(1..40))

 LocRegReqStatus ::= CHOICE{

 registered NULL,

 notRegistered UTF8String (SIZE(0..256))

 }

 OBAppVersion ::= UTF8String (SIZE(0..5))

 OBAppVersionList ::= SET OF OBAppVersion

 Recipient ::= SEQUENCE{

 remoteAddress RemoteAddress,

 communicationCategory CommunicationCategory

 }

 RecipientList ::= SET OF Recipient

 RemoteAddress ::= UTF8String (SIZE(3..256))

 RemoteAddressList ::= SET OF RemoteAddress

55 / 58

 SessionEstablishmentOrigin ::= ENUMERATED{localApplication,

remoteApplication}

 SessionIdList ::= SET OF Uuid

 SessionStartReqFinalStatus ::= ENUMERATED{established, rejected}

 SessionStartReqFirstStatus ::= ENUMERATED{inProgress, networkNotReady,

notRegistered, rejected}

 SessionStatusReqStatus ::= ENUMERATED{established, inProgress,

networkNotReady, notRegistered, rejected}

 VideoComm ::= ENUMERATED{basic, critical}

 Uuid ::= UTF8String (SIZE(36))

--

-- OBapp MESSAGES --

--

EventStreamOpeningOBAnswer ::= SEQUENCE{

 appOBId Uuid

}

LocalRegAppReq ::= SEQUENCE{

 appCategory ApplicationCategory,

 staticId ApplicationStaticId,

 appOBId Uuid,

 obAppVersionList OBAppVersionList,

 couplingMode CouplingMode DEFAULT loose

}

LocalRegFRMCSAnswer ::=SEQUENCE{

 reqStatus LocRegReqStatus,

 selectedObAppVer OBAppVersion

}

FRMCSSessionStartAppReq ::= SEQUENCE{

 appOBId Uuid,

 localAppIPAddress IPAddress,

 recipientList RecipientList

}

FRMCSSessionStartFirstAns ::= SEQUENCE{

 reqStatus SessionStartReqFirstStatus,

 sessionId Uuid OPTIONAL

}

FRMCSSessionStartFRMCSFinalAns ::= SEQUENCE{

 reqStatus SessionStartReqFinalStatus,

 sessionId Uuid,

 -- next field present only in case reqStatus is established --

 localDestFRMCSIPAddress IPAddress OPTIONAL

56 / 58

}

FRMCSSessionStatAppReq ::=SEQUENCE{

 appOBId Uuid,

 sessionIdList SessionIdList OPTIONAL

}

FRMCSSessionStatAns ::=SEQUENCE{

 reqStatus GenericReqStatus,

 activeSessionList ActiveSessionList

}

AuxiliaryFunctionSubReq ::= SEQUENCE{

 appOBId Uuid,

 auxFunctionSubList AuxFunctionSubList

}

AuxiliaryFunctionSubAns ::= SEQUENCE{

 reqStatus GenericReqStatus,

 auxFunctionStatList AuxFunctionStatList

}

AuxiliaryFunctionNotification ::= SEQUENCE{

 auxFunctionName AuxiliaryFunctionCategory,

 auxFunctionValue AuxFunctionValue

}

AuxFunctionQueryAppReq ::=SEQUENCE{

 appOBId Uuid,

 auxFunctionNameList AuxiliaryFunctionCategoryList

}

AuxFunctionQueryAns ::= SEQUENCE{

 reqStatus GenericReqStatus,

 auxFunctionNotificationList AuxFunctionNotificationList

}

AuxiliaryFunctionUnsubReq ::= SEQUENCE{

 appOBId Uuid,

 auxFunctionUnsubList AuxiliaryFunctionCategoryList OPTIONAL

}

AuxiliaryFunctionUnsubAns ::= SEQUENCE{

 reqStatus GenericReqStatus,

 auxFunctionUnsubStatList AuxFunctionUnsubStatList

}

FRMCSSessionEndReq::= SEQUENCE{

 appOBId Uuid,

 sessionId Uuid

}

FRMCSSessionEndAns ::=SEQUENCE{

 reqStatus GenericReqStatus

57 / 58

}

IncomingSessionStartReq ::=SEQUENCE{

 remoteAddress RemoteAddress,

 communicationCategory CommunicationCategory,

 sessionId Uuid,

 localDestFRMCSIPAddress IPAddress

}

IncomingSessionStartAppAns ::= SEQUENCE{

 sessionId Uuid,

 sessionStartDecision GenericReqStatus,

 localAppIPAddress IPAddress OPTIONAL

}

IncomingSessionEndNotif ::=SEQUENCE{

 sessionId Uuid

}

LocalDeregAppReq::=SEQUENCE{

 appOBId Uuid

}

LocalDeregAppans::=SEQUENCE{

 reqStatus GenericReqStatus

}

END

58 / 58

12 Annex B: Interoperability requirements in EU

This annex is the placeholder for identifying the requirements relevant for

interoperability in the European Union, i.e. the requirements, with respect to the

authorisation in the EU according to the TSI, that are considered in the European

Directives to be relevant for interoperability as fulfilling the essential requirements for

the Control-Command and Signalling (CCS) subsystem related to safety and

technical compatibility which must be met by the rail system, the subsystems, and

the interoperability constituents, including interfaces according to the corresponding

conditions set out in Directive (EU) 2016/797. It is mandatory that each railway

subsystem in the EU meets these requirements on lines under the scope of the

Directive and the CCS TSI to ensure technical compatibility between Member States

and safe integration between train and track.

At this stage, the version of this specification is not considered complete for the

purpose of tendering On-Board FRMCS equipment, and the identification of all

requirements relevant for interoperability is for further study.

This annex is therefore only informative.

